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LElTER TO THE EDITOR 
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Carlos, Universidade de SQo Paulo, Caixa Postal 369, 13560 SI0 Carlos SP, Brazil 

Received 3 December 1987 

Abstract. Neural networks are only useful as associative memories if an outside observer 
is able to ascertain whether a particular input corresponds to one of the memory states or 
not, i.e. the memory must be transparent. We design a model system which enters a 2-cycle 
whenever an input is not within the basin of attraction of some memory state. 

Neural networks have recently attracted a lot of attention since they are the best way 
known to implement non-programmable, massively parallel and robust computing 
systems with associative memories. 

A very simplified model would consist of N neurons described by variables Si, 
i = 1,2 , .  . . , N, which may assume the values +1 for active and -1 for passive neurons 
and synaptic connections Jli encoding the strength with which neuronj acts on neuron 
i. 

In Hopfield’s model (Hopfield 1982) Jij are symmetric and determined by the 
patterns of activity to be stored as memories. If we call these patterns prototypes 
ti = *1 then the storage of p of them is achieved by implementing Hebb’s rule as 

In this model, update is asynchronous and can be deterministic or random with 
the presence of some noise. These two cases are referred to as the zero-temperature 
limit and finite temperature. We will restrict ourselves to the former in the following 
for simplicity. 

If N is large and the prototypes are orthogonal, the number of prototypes which 
can be stored is proportional to N :  

p = a N .  (2) 

Numerical simulations (Amit er al 1987) show that for Os a s a, = 0.14 an input 
pattern sufficiently near to one of the prototypes will lead the system to a fixed point 
which is very close to the prototype. This proximity is measured by the retrieval overlap 

(3) 

and for a C a, it yields 1 a ”1 ( t  = 00) 3 0.97. The system is in the retrieval phase. If 
a,< a <CO the system will still reach a fixed point but with 0.43 rnp 3 0.18. The system 
is then said to be confused. 
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As has been pointed out recently by Parisi (1986) such a system has an important 
shortcoming which renders it useless as a realistic, usable associative memory. The 
problem is the following. When some input pattern is presented and we want, for 
example, to ask the simple question whether this pattern is one (or near one) of the 
prototypes, it is impossible to get an answer, since without previous knowledge of the 
memory contents we do not know whether the stationary state attained corresponds 
to a prototype or whether the system is confused. An outside observer would simply 
be unable to discriminate between the two cases. 

In a workable system it would be extremely useful if these two situations could be 
distinguished. Parisi has suggested that such a discrimination should be possible for 
sufficiently asymmetric synaptic connections, but this has not been verified. 

The above mentioned problem can be explicitly solved if we resort to synchronous 
update. Models with synchronous (parallel) dynamics have recently been investigated 
in some detail and found to exhibit a very rich phase diagram (Fontanari and Koberle 
1987, 1988). The new feature distinguishing these systems is the presence of cycles, 
at most of length two, which can never occur for asynchronous models. Neurons 
participating in a cycle flip from S I (  t )  to S,(  t + 1) = - S I (  t ) .  Therefore if we want cycles 
to occur in a controllable fashion, our model should include the possibility of this 
switching behaviour being a self-regulating process. In our previous studies we found 
that the intensity of the diagonal coupling J,, is a parameter whose tuning allows the 
occurrence of cycles to be controlled. Now we want the system itself to do the tuning. 

The idea then would be to design a system which goes to a fixed point if the retrieval 
overlap, equation (3), is greater than a given parameter fi. Accordingly we will include 
in the model a diagonal coupling which is small for m p  2 rii and large and negative 
(it is negative values of J,, which favour cycles) for m p  < f i . 

With this in mind we propose the following synchronous evolution: 

SI( t+  1) = sgn[h(t)l  (4a)  

where 

h t ( t )  = E  J y ( t ) S ] ( r )  
I 

and J y ( t )  is determined as 

H ( x )  being the step function 

x > o  
x s o .  

H ( x )  = 

Thus, given the initial configuration { S , (  to) }  we use (4b) to compute Jll( to), which 
in turn inserted in (4a) yields { S l ( t o + l ) } .  Notice that the off-diagonal part of Jy is 
time independent. 

If m ” ( t )  is greater than rii the term p = Y in the product for J , , ( t ) ,  equation (4b), 
will vanish and only the usual off-diagonal part survives, leading the system to a fixed 
point. If m u (  t )  is smaller than m for all Y then J,, = - p  will overwhelm the off-diagonal 
parts. Thus if the system enters a limit cycle, the input pattern is not near a prototype. 
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The value of f i  determines the size of the basins of attraction of the retrieval states 
and any value greater than (m’(a =0.15)),, where (. . .)f  means an average over 
prototypes, will not modify the system’s performance described above. Although it is 
known that (m’(a = 0.15)), = 0.4 for Hopfield’s model (Amit er a1 1987), there is no 
similar result for the synchronous model and it is beyond our computational resources 
to calculate it. However, we expect ( m w ( a  = 0.15)),) 0.4 for the synchronous model 
(Gardner et a1 1987). 

In order to test if our model performs the way described we measure the average 
‘magnetisation’ 

m =((m’(t )+mw(t+l ) ) /2) ,  ( 5 )  

and 

where ( 1  - q ) / 2  yields the probability of finding complete cycles (all spins flipping) 
and (1 + q ) / 2  the one of finding fixed points. 

We ran simulations for m = 0.97 and N = 50, 100 and 200, averaging over 3000 
prototypes. The input patterns were chosen to be prototypes. As can be seen from 
figure l (a) ,  the magnetisation drops from its maximum value at a = O  rather sharply 
to zero when a varies through ac= 0.14. We obtained m = 0 for cy > a ,  because 
m@( t )  = -m’( t +  1 )  f 0. For small values of m the system enters a cycle. This is shown 
in figure 1( b ) ,  where we show q as a function of a. The region around a,  where fixed 
points ( q  = +1) coexists with complete cycles ( q  = -1) is expected to disappear in 
the large-N limit. As mentioned above, these results are in fact independent of 
m > ( m ( a  = 0.15))€. Notice that there will be no fixed points near (-67) since Jv(t) 
is not invariant under the replacement of ( 5 7 )  by (-67).  

Summarising, this letter presents a model whose memory contents can be known 
by the external world, i.e. they are transparent, since the retrieval and confused phases 
have different asymptotic dynamical behaviours. 

Figure 1. ( U )  Average retrieval overlap for r i ~  = 0.97 and N = 50 ( A ) ,  100 (U), 200 (0) as 
a function of a. We average over 3000 prototypes which are chosen to be the input patterns. 
( b )  Average overlap between equilibrium states for consecutive times. The parameters are 
the same as those of ( a ) .  
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